Our goal is to propose a useful and effective method to determine optimal machining parameters in order to minimize surface roughness, resultant cutting forces and maximize tool life in the turning process. At first, three separate neural networks were used to estimate outputs of the process by varying input machining parameters. Then, these networks were used as optimization objective functions. Moreover, the proposed algorithm, namely, GA and PSO were utilized to optimize each of the outputs, while the other outputs would also be kept in the suitable range. The obtained results showed that by using trained neural networks with genetic algorithms as optimization objective functions, a powerful model would be obtained with high accuracy to analyze the effect of each parameter on the output(s) and optimally estimate machining conditions to reach minimum machining outputs.
کلید واژگان :Neural network (ANN); Surface roughness; Genetic algorithm (GA); Cutting forces; Particle swarm optimization (PSO); Tool life
ارزش ریالی : 1200000 ریال
با پرداخت الکترونیک
جزئیات مقاله
- کد شناسه : 1142814136141955
- سال انتشار : 2013
- نوع مقاله : پذیرفته شده در مجلات Scopus ,ISI با 4>IF>
- زبان : انگلیسی
- محل پذیرش : Journal of Mechanical Science and Technology
- IF مجله : 0.7
- ISSN : 1738-494x
- تاریخ ثبت : 1394/01/15 14:26:01
- ثبت کننده : مهران تقی پور گرجی کلایی
- تعداد بازدید : 306
- تعداد فروش : 0