Portfolio optimization: with using a hybrid evolutionary recursive discrete imperialist competitive algorithm and genetic algorithm RD-ICGA (case study TSE)
1393/11/28 20:17:27
مقطع : کارشناسی ارشد
دانشگاه : تربیت مدرس
تاریخ دفاع : 1392/01/29
اساتید راهنما : پروفسور علی اصغر انواری رستمی
اساتید مشاور : دکتر حسین اعتمادی
اساتید داور :
مشاهده سایر پایان نامه های مصطفی امامی
AB STRACT
In this research toward optimizing resource allocation, an innovative learning algorithm will
used to select and optimize portfolio in Tehran Stock Exchange .A new method was
proposed based on the combination of ICA (Imperial Competitive Algorithm) and GA
(Genetic Algorithm) which improves the convergence speed and accuracy of the
optimization results.. The obtained results show that compared with the previous method, the
proposed algorithms are at least 32% faster in optimization processes; also the variance
convergence speed is smaller than the ICA and GA.