Drug addiction is an occurrence with physiological, psychological, and social outcomes. Repeated drug exposure causes neuronal adaptations and dependency. It has been shown that CaMKII enzyme contributes to morphine dependency. The locus coeruleus nucleus has been implied in the morphine withdrawal syndrome. This research focuses on the behavioral and molecular adaptations that occur in the locus coeruleus neurons in response to the chronic morphine exposure. Adult male Wistar rats were injected by morphine sulfate (10 mg/kg/s.c.) at an interval of 12 h for a period of nine subsequent days. On the tenth day, naloxone (1 mg/kg/i.p.) was injected 2 h after the morphine administration. Somatic withdrawal signs were investigated for 30 min. We concluded that the inhibition of CaMKII by administration of KN-93, the specific inhibitor of this enzyme, significantly attenuated some of the withdrawal signs. In molecular method, the expression of CaMKII protein has been enhanced in locus coeruleus of the morphine dependent rats. These findings indicate that CaMKII may be involved in the modulation of the naloxone-induced withdrawal syndrome, and treatment with KN-93 may have some effects on this system.
کلید واژگان :Dependency, CaMKII, Locus coeruleus, Withdrawal signs
ارزش ریالی : 1200000 ریال
با پرداخت الکترونیک