چکیده :

Fiber metal laminates (FMLs) represent a high-performance family of hybrid materials which consist of thin metal sheets bonded together with alternating unidirectional fiber layers .In this study, the buckling behavior of a FML circular cylindrical shell under axial compression is investigated via both analytical and finite element approaches. The governing equations are derived based on the first-order shear deformation theory and solved by the Navier solution method. Also, the buckling load of a FML cylindrical shell is calculated using linear eigenvalue analysis in commercial finite element software, ABAQUS. Due to lack of experimental and analytical data for buckling behavior of FML cylindrical shells in the literature, the proposed model is simplified to the full-composite and full-metal cylindrical shells and buckling loads are compared with the available results. Afterwards, the effects of FML parameters such as metal volume fraction (MVF), composite fiber orientation, stacking sequence of layers and geometric parameters are studied on the buckling loads. Results show that the FML layup has the significant effect on the buckling loads of FML cylindrical shells in comparison to the full-composite and full-metal shells. Results of this paper hopefully provide a useful guideline for engineers to design an efficient and economical structure.

کلید واژگان :

buckling; fiber metal laminate (FML); analytical modelling; finite element analysis



ارزش ریالی : 600000 ریال
دریافت مقاله
با پرداخت الکترونیک