چکیده :

Purpose – The purpose of this paper is to analyze theoretically the effects of thermal radiation with electrohydrodynamics through a Riga plate. An incompressible and irrotational fluid with constant density is taken into account. The governing flow problem is modeled with the help of linear momentum, thermal energy equation and nanoparticle concentration equation. Design/methodology/approach – Numerical integration is used with the help of the shooting technique to examine the novel features of the velocity profile, temperature profile and nanoparticle concentration profile. The impact of all the emerging parameters is sketched with the help of graphs. The numerical values of local Nusselt number and Sherwood number are also presented. Findings – The no-slip condition is considered for the present study. The effects of electromagnetohydrodynamics enhance the velocity profile while thermal radiation effects tend to raise the temperature profile. The present study depicts many interesting behaviors that warrant further study on Riga plates with different non-Newtonian fluid models. A comparison is also presented with the existing published results which confirms the validity of the presented methodology.

کلید واژگان :

Nanofluid, Heat transfer, Thermal radiation, Shooting method, EMHD Paper type Research paper



ارزش ریالی : 600000 ریال
دریافت مقاله
با پرداخت الکترونیک