Accurate recognition of external defects on potato color images is an important point in the realization of automatic computer vision-based potato grading and sorting station. Therefore, pixel-based segmentation of potato color image is an essential step in every inspection system by computer vision. Invasive Weed Optimization (IWO) is a new evolutionary algorithm which recently introduced and has a good performance in some optimization problems. IWO is a derivative-free, meta-heuristic algorithm, mimicking the ecological behavior of colonizing weeds. In this study, firstly a proper color component for potato color image segmentation using a statistical analysis on some training images is selected. Then, combining the IWO and ANN (Artificial Neural Networks) to solve pixel-based potato classification has been proposed. In this proposed algorithm, Multi Layer Perceptron (MLP) network manages the problem’s constraints and IWO algorithm searches for the best network weights based on minimization of the cost function. Experimental results on more than 500 potato images show that this method can improve the performance of the traditional learning of MLP significantly.
کلید واژگان :Potato image segmentation, artificial neural network, invasive weed optimization algorithm
ارزش ریالی : 500000 ریال
با پرداخت الکترونیک
جزئیات مقاله
- کد شناسه : 2150911059788534
- سال انتشار : 2012
- نوع مقاله : پذیرفته شده در سایر مجلات علمی معتبر و علمی مروری و ISC
- زبان : انگلیسی
- محل پذیرش : Trends in Applied Sciences Research
- برگزار کنندگان :
- ISSN : 1819-3579
- تاریخ ثبت : 1396/08/05 16:53:17
- ثبت کننده : نوید رزمجوی
- تعداد بازدید : 255
- تعداد فروش : 0