چکیده :

In this study, natural convection in a concentric annulus between a cold outer square and heated inner circular cylinders in presence of static radial magnetic field is investigated numerically using the lattice Boltzmann method. The inner and outer cylinders are maintained at constant uniform temperatures and it is assumed that all walls are insulating the magnetic field. The numerical investigation is carried out for different governing parameters namely; the Hartmann number, nanoparticles volume fraction and Rayleigh number. The effective thermal conductivity and viscosity of nanofluids are calculated using the Maxwell–Garnetts (MG) and Brinkman models, respectively. Also, the multi-distribution-function (MDF) model is used for simulating the effect of uniform magnetic field. The results reveal that the average Nusselt number is an increasing function of nanoparticle volume fraction as well as the Rayleigh number, while it is a decreasing function of the Hartmann number

کلید واژگان :

Radial magnetic field Nanofluid Natural convection Lattice Boltzmann method



ارزش ریالی : 600000 ریال
دریافت مقاله
با پرداخت الکترونیک