چکیده :

PID controllers date to 1890s governor design.[2][4] PID controllers were subsequently developed in automatic ship steering. One of the earliest examples of a PID-type controller was developed by Elmer Sperry in 1911,[5] while the first published theoretical analysis of a PID controller was by Russian American engineer Nicolas Minorsky, (Minorsky 1922). Minorsky was designing automatic steering systems for the US Navy, and based his analysis on observations of a helmsman, noting the helmsman controlled the ship based not only on the current error, but also on past error as well as the current rate of change;[6] this was then made mathematical by Minorsky.[7] His goal was stability, not general control, which simplified the problem significantly. While proportional control provides stability against small disturbances, it was insufficient for dealing with a steady disturbance, notably a stiff gale (due to steady-state error), which required adding the integral term. Finally, the derivative term was added to improve stability and control. Trials were carried out on the USS New Mexico, with the controller controlling the angular velocity (not angle) of the rudder. PI control yielded sustained yaw (angular error) of ±2°. Adding the D element yielded a yaw error of ±1/6°, better than most helmsmen could achieve.[8] The Navy ultimately did not adopt the system, due to resistance by personnel. Similar work was carried out and published by several others in the 1930s. In the early history of automatic process control the PID controller was implemented as a mechanical device. These mechanical controllers used a lever, spring and a mass and were often energized by compressed air. These pneumatic controllers were once the industry standard. Electronic analog controllers can be made from a solid-state or tube amplifier, a capacitor and a resistor. Electronic analog PID control loops were often found within more complex electronic systems, for example, the head positioning of a disk drive, the power conditioning of a power supply, or even the movement-detection circuit of a modern seismometer. Nowadays, electronic controllers have largely been replaced by digital controllers implemented with microcontrollers or FPGAs. However, analog PID controllers are still used in niche applications requiring high-bandwidth and low noise performance, such as laser diode controllers.[9] Most modern PID controllers in industry are implemented in programmable logic controllers (PLCs) or as a panel-mounted digital controller. Software implementations have the advantages that they are relatively cheap and are flexible with respect to the implementation of the PID algorithm. PID temperature controllers are applied in industrial ovens, plastics injection machinery, hot stamping machines and packing industry.

کلید واژگان :

P,I,D,PI,PD,PID



ارزش ریالی : 150000 ریال
دریافت مقاله
با پرداخت الکترونیک