Manufacturing organizations have to improve the quality of their products regularly to survive in today’s competitive production environment. This paper presents a method for identification of unknown patterns between the manufacturing process parameters and the defects of the output products and also of the relationships between the defects. Discovery of these patterns helps practitioners to achieve two main goals: first, identification of the process parameters that can be used for controlling and reducing the defects of the output products and second, identification of the defects that very probably have common roots. In this paper, a fuzzy data mining algorithm is used for discovery of the fuzzy association rules for weighted quantitative data. The application of the association rule algorithm developed in this paper is illustrated based on a net making process at a netting plant. After implementation of the proposed method, a significant reduction was observed in the number of defects in the produced nets.
کلید واژگان :Data mining; association rules; defect analysis; fuzzy sets; root cause analysis; quality
ارزش ریالی : 500000 ریال
با پرداخت الکترونیک
جزئیات مقاله
- کد شناسه : 1150728688565460
- سال انتشار : 2017
- نوع مقاله : پذیرفته شده در سایر مجلات علمی معتبر و علمی مروری و ISC
- زبان : انگلیسی
- محل پذیرش : International Journal of Advanced Computer Science and Applications
- برگزار کنندگان :
- ISSN :
- تاریخ ثبت : 1396/07/14 14:18:05
- ثبت کننده : فرشاد محبی
- تعداد بازدید : 255
- تعداد فروش : 0