The purpose of grid computing is to produce a virtual supercomputer by using free resources available through widespread networks such as the Internet. This resource distribution, changes in resource availability, and an unreliable communication infrastructure pose a major challenge for efficient resource allocation. Because of the geographical spread of resources and their distributed management, grid scheduling is considered to be a NP-complete problem. It has been shown that evolutionary algorithms offer good performance for grid scheduling. This article uses a new evaluation (distributed) algorithm inspired by the effect of leaders in social groups, the group leaders' optimization algorithm (GLOA), to solve the problem of scheduling independent tasks in a grid computing system. Simulation results comparing GLOA with several other evaluation algorithms show that GLOA produces shorter makespans.
کلید واژگان :Artificial Intelligence, Distributed Computing, Grid Computing, Job Scheduling, Makespan
ارزش ریالی : 300000 ریال
با پرداخت الکترونیک
جزئیات مقاله
- کد شناسه : 3145661961627739
- سال انتشار : 2013
- نوع مقاله : پذیرفته شده در سایر مجلات علمی معتبر و علمی مروری و ISC
- زبان : انگلیسی
- محل پذیرش : International Journal of Artificial Intelligence and Interactive Multimedia
- برگزار کنندگان :
- ISSN :
- تاریخ ثبت : 1394/12/09 04:03:36
- ثبت کننده : Mohammad Shojafar
- تعداد بازدید : 265
- تعداد فروش : 0