چکیده :

بیماری قند خون یک عارضه متابولیک مزمن است که در آن عدم تنظیم صحیح سطح گلوکز خون در بیماران دیابتی به خطر حمله قلبی، بیماری و از کار افتادگی کلیه ها منجر خواهد شد. دسته بندی اطلاعات وظیفه نخست در داده کاوی است. وظیفه دسته بندی دقیق و ساده داده می تواند به خوشه سازی مناسب حجم بالایی از اطلاعات منجر خواهد شد. در این مقاله ما مدلی بر اساس یک شبکه عصبی مصنوعی (ANN) برای دسته بندی تجربه و پیشنهاد کرده ایم. این روش یکی از قدرتمندترین روش های حوزه هوش برای دسته بندی بیماران دیابتی به دو دسته است. برای رسیدن به نتایج بهتر، الگوریتم ژنتیکی برای انتخاب آینده استفاده می شود. الگوریتم ژنتیک برای پیدا کردن بهینه ترین تعداد نورونها در مدل تک لایه پنهان استفاده شده است. افزون بر این مدل با الگوریتم نفوذ به عقب Back Propagation (BP) و الگوریتم ژنتیکی، هدف گیری شده و دقت های دسته بندی با روش اتصال عملکردی (فانکشنال لینک FLANN) و سیستمهای دسته بندی گوناگون مانند NN یا نزدیکترین همسایه (نیرست نیبور)، k-NN، BSS ( نیرست نیبور با ویژگی انتخاب مکرر رو به عقب مشخصه ها ، MFS1 (مالتیپل فیچر سابست)، MFS2 در دقت دسته بندی داده ها مقایسه شده است. شبیه سازی نشان میدهد که مدل پیشنهادی در مقایسه با NN، kNN، BSS، MFS1 و MFS2 و FLANN بهتر عمل می کند و می تواند گزینه مناسبی برای بسیاری از کاربردهای واقعی باشد چون این روش ساده بوده و کارایی بالایی دارد.

کلید واژگان :

شبکه عصبی مصنوعی ، الگوریتم ژنتیکی، دسته بندی داده، لینک های عملکردی



ارزش ریالی : 300000 ریال
دریافت مقاله
با پرداخت الکترونیک